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ABSTRACT Sonic hedgehog (Shh) controls critical cellular decisions between distinct fates in many systems, particularly in
stem cells. The Shh network functions as a genetic switch, and we have theoretically and computationally analyzed how its
structure can endow it with the ability to switch fate choices at a threshold Shh concentration. The network is composed of
a positive transcriptional feedback loop embedded within a negative signaling feedback loop. Specifically, positive feedback by
the transcription factor Gli, which upregulates its own expression, leads to a switch that can adopt two distinct states as
a function of Shh. However, Gli also upregulates the signaling repressor Patched, negative feedback that reins in the strong Gli
autoregulatory loop. Mutations that have been associated with cancer are predicted to yield an irreversible switch to a high Gli
state. Finally, stochastic simulation reveals the negative Patched feedback loop serves a critical function of dampening
Gli fluctuations to reduce spontaneous state switching and preserve the network’s robust, switch-like behavior. Tightly
linked positive and negative feedback loops are present in many signaling systems, and the Shh system is therefore
likely representative of a large set of gene regulation networks that control stem cell fate throughout development and into
adulthood.

INTRODUCTION

Throughout development and adulthood, cells are exposed to

complex regulatory signals and must correctly interpret these

signals to implement necessary functional decisions. Signal

transduction and gene regulation cascades are therefore

information processing mechanisms that translate extracel-

lular information into intracellular decisions. In many cases,

cells are exposed to a variable or graded concentration of an

external signal, and at key intermediate levels, they switch

between two alternate behaviors or fates in an ‘‘all-or-none’’

fashion. Important examples of these alternate decisions

include cell survival versus apoptosis, stem cell proliferation

versus differentiation (Lillien, 1995; Marshall, 1995; Weiss-

man et al., 2001), chemoattraction versus chemorepulsion

(Song and Poo, 2001), and the numerous critical cell fate

choices that stem cells face either individually or as part of an

integrated tissue patterning process during development

(Wagers et al., 2002; Weissman et al., 2001). Analyzing the

signal transduction and gene regulation mechanisms that

mediate such biological or genetic switches can therefore

yield insights into numerous cellular processes.

Drosophila hedgehog and Sonic hedgehog (Shh), one of

its three mammalian homologs, are canonical, secreted

signaling factors that regulate cell function and fate in

numerous systems. Among its many roles during develop-

ment, Sonic hedgehog patterns spinal cord and limb bud

tissue differentiation and controls midbrain and ventral

forebrain neuronal differentiation (Ericson et al., 1995;

Hynes et al., 1995; Jessell and Lumsden, 1997; Ruiz i Altaba

et al., 2002a). Importantly, Shh can pattern tissue during

development by forming a concentration gradient, a phe-

nomenon best characterized in the neural tube and spinal

cord (Ericson et al., 1995, 1996), and cells sense their posi-

tion within the gradient and differentiate into distinct cell

phenotypes as a function of the concentration.

In addition to patterning cell differentiation, Shh also

controls the proliferation of numerous cell populations during

development, including cerebellar granule cells and retinal

progenitors (Ruiz i Altaba et al., 2002a; Wechsler-Reya and

Scott, 1999). Beyond its roles in development, we recently

found that Shh also stimulates neural progenitor cell

proliferation in the adult brain, and therefore regulates the

process of adult neurogenesis in the hippocampus (Lai et al.,

2003). In addition, similar to other signaling systems that

control cell proliferation, mutations in the Shh system have

been associated with cancer in numerous tissues (Ruiz i

Altaba et al., 2002b). In different contexts, therefore, the Shh

signaling system functions as a modular circuit that can

manage or be tasked to different cellular decisions. Very

importantly, Shh flips cells between alternate functional states

at key threshold concentrations. However, the properties of

the Shh gene regulatory network that allow it to function as

a switch during cell fate determination, and to malfunction

during disease, have not been quantitatively analyzed.

Shh transduces its signal to cells by interacting with its 12-

pass transmembrane receptor Patched (Ptc) (reviewed in Ho

and Scott, 2002, and Ruiz i Altaba et al., 2002a). In the

absence of Shh, Ptc represses the signaling activity of

Smoothened (Smo), a seven-pass transmembrane protein,

and therefore acts as a repressor of Shh signaling (Fig. 1 A).

Binding of Shh to Ptc releases its repression on Smo, which

then transduces a signal by activating members of the Gli

family of transcription factors. In the absence of a Smo

signal, Gli3 is constitutively cleaved to generate a transcrip-

tion factor (Gli3R in Fig. 1 A) that represses expression of

Shh targets. Activation of Smo reduces the rate of Gli3
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cleavage (Wang et al., 2000), however, and the resulting full-

length Gli3 then binds to consensus sites within and thereby

activates the promoters of a number of Shh targets. Among

these are ptc, shh, gli1, and gli2. In addition, gli3 transcrip-

tion is repressed. Upon expression, Gli1 and Gli2 act as tran-

scriptional activators with somewhat overlapping functions.

They bind to the same consensus sites as Gli3 (TGGGT-

GGTC) and therefore exert positive feedback on their own

expression, as well as activate a number of other targets to

mediate the downstream cell regulatory effects of Shh

signaling. Genes that positively regulate their own expres-

sion can be found in a large number of systems (Aota et al.,

2003; Ebert et al., 2003; Kuziora and McGinnis, 1988;

Murphy and Reiner, 2002), and Gli therefore represents a

general autoregulatory motif. Analyzing the properties of

autoregulatory developmental transcription factors con-

trolled by extracellular signals is therefore of broad interest.

However, the Shh system also exhibits negative feedback, as

Gli transcriptionally activates the signal repressor Ptc (Ho

and Scott, 2002; Jessell and Lumsden, 1997; Ruiz i Altaba

et al., 2002a,b).

The dynamic behavior of this complex signaling and gene

regulatory network is not intuitively evident, and a quantita-

tive, systems biology approach can significantly aid in ana-

lyzing its signal processing dynamics (Hasty et al., 2001; Rao

et al., 2002). Simple models of autoregulatory transcription

FIGURE 1 (A) Schematic of the Shh signaling system, where Shh binding to its receptor Ptc releases Ptc suppression of the activity of the coreceptor Smo.

Smo signaling then inhibits the conversion of the transcription factor Gli3 from an activator to a repressor form. The subsequent accumulation of the Gli3

activator activates the genes gli and ptc. Gli1 binds to and transcriptionally activates its own promoter, as well as that of the signal repressor Ptc. (B) Differential

equations that describe the rate of change of the network components depicted in the schematic. (C) Promoter and Basal functions. (D) These functions, which

are ratios of polynomials, vary between 0 and 1 and describe how the inducible and basal activities of the gli and ptc promoters vary functionally with the

concentrations of the three transcription factors that bind them: Gli3, Gli3R, and Gli. The sigmoidal curves of Promoter and Basal are shown as a function of Gli

(with Gli3 5 0) at different levels of the repressor Gli3R.
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factor systems exhibit bistable behavior (Lewis et al., 1977;

Savageau, 1974). We have built upon this work and apply

deterministic and stochastic modeling to demonstrate that the

Sonic hedgehog regulatory network functions as a bistable

genetic switch, a property that likely underlies its ability to

correctly flip cell fates at precise, threshold Shh concen-

trations. Furthermore, the network is composed of a positive

feedback loop embedded within a negative feedback loop,

and this structure has likely evolved to endow the system

with several crucial properties. Specifically, the Shh network

architecture makes it relatively insensitive to changes in the

values of some but not all of its rate constants, as well as to

biological noise or fluctuations in the concentrations of its

constituent proteins. However, several genetic mutations in

the network have been associated with Shh-related cancers

(Ruiz i Altaba et al., 2002b). Intriguingly, changing the

values of network kinetic constants to model these mutations

‘‘breaks’’ the switch, so that the system continually exists in

an ‘‘On’’ state to potentially initiate the process of cell

transformation and tumorigenesis.

MODEL DEVELOPMENT AND RESULTS

The Shh signaling network (Fig. 1) can be represented as a set

of differential equations that track the rates of change in the

concentrations of the network constituents, and whose

individual terms represent rates of protein synthesis and

degradation (derived in Supplemental Material). For exam-

ple, in the first equation for Gli (Fig. 1 B), the first term

represents the rate of induced synthesis due to gli promoter

activation and protein translation (derived in Supplemental

Material), the second term is the rate of basal synthesis or

leakiness from the promoter, and the final term is Gli protein

degradation. For simplicity, because their activities appear to

be somewhat overlapping (Bai et al., 2002; Bai and Joyner,

2001), the effects of both the Gli1 and Gli2 transcriptional

activators are initially lumped into a single term, Gli. Gli and

Ptc transcriptional repression and activation are represented

within the expressions Promoter and Basal, which are ratios

of polynomials and are sigmoidal similar to a Hill function

(Fig. 1, C and D). These terms describe the inducible and

basal rates of synthesis due to the presence of multiple Gli

binding sites within the gli1, gli2, and ptc promoters (Dai

et al., 1999; Marigo and Tabin, 1996; Ruiz i Altaba, 1998).

mRNA dynamics are not independently tracked, and both

transcription and translation are lumped into the synthesis

rates (see Supplemental Material for details of this

approximation). Next, it has been experimentally observed

that Shh signaling represses Gli3 expression (Wang et al.,

2000). We have therefore made Gli3 synthesis inversely

related to Ptc levels (Fig. 1 B), a nonmechanistic relationship

that can be revised in the future as the biology is further

elucidated. Finally, the Shh concentration is incorporated

into the term Signal in the Gli3 equation, and it acts by

reducing the proteolysis of Gli3 into the transcriptional

repressor Gli3R.

Kinetic and binding parameter values were either directly

taken from literature or estimated based upon analogous

biological systems (Table 1 and Supplemental Materials).

The equations were initially numerically integrated using

Berkeley Madonna software (www.berkeleymadonna.com)

to track the system behavior as the Shh concentration is

changed, and since Gli1 and Gli2 are key effectors of

downstream cellular responses to the Shh signal (Bai et al.,

2002; Bai and Joyner, 2001; Ruiz i Altaba 1998), we will

report the Gli concentration as the most relevant and

important output of the system. Furthermore, since a range

of equilibrium dissociation binding constants have been

reported for Shh binding to Ptc varying from 0.5 to 2 nM

(Fuse et al., 1999; Taipale et al., 2002), the Shh concentration

TABLE 1 Parameter values

Parameter Description Value/range

K1, K2 (Mizugishi et al., 2001) Dissociation constant of Gli1 and Gli3 for Gli DNA

binding site, respectively

8.3 3 10210 M

kdeg (Chen et al., 1999) Degradation rate constant for all Gli variants 0.009 min21

KShh (Fuse et al., 1999; Taipale et al., 2002) Dissociation constant for Shh-Ptc binding 0.58–2.0 nM

KPtc (Taipale et al., 2002) Half-maximal concentration of Ptc which inhibits Smo

signaling

8.3 3 10211 M

c (Keller, 1995) Binding cooperativity 1

e (Keller, 1995) Transcriptional efficiency 0.5

r Transcriptional repression 0.2

kdeg, P (French and Lauffenburger, 1996) Degradation rate constant for Ptc 0.09 min21

vmax,G Maximum rate of Gli synthesis 2.4 3 10210 M/min

rbas,G Basal rate of Gli synthesis vmax,G/100

rg3b Basal rate of Gli3 synthesis 1.6 3 10219 M2/min

Kg3rc Sensitivity constant of the conversion to signal strength 0.1

kg3rc Rate constant for the conversion of Gli3 to Gli3R 0.012 min21

vmax,P Maximum rate of Ptc synthesis 7.5 3 10210 M/min

rbas,P Basal rate of Ptc synthesis vmax,P/100

Values initially used for the computations in Fig. 2, A and B. Parameter sensitivity analysis was subsequently performed for all parameters.
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will be reported as its ratio to the Shh dissociation binding

constant (Shh/KShh). Fig. 2 A demonstrates that at a low Shh

level, the Gli concentration likewise settles to a low value.

However, when at t 5 0.5 h the Shh level is increased to

a concentration 15-fold higher than its Ptc binding dissoci-

ation constant, Gli rapidly increases to a new, 23-fold higher

steady-state value. The system therefore appears to behave as

a switch. That is, at low Shh and Gli concentrations, an

‘‘Off’’ state is maintained because Gli transcription contin-

ually occurs at a low rate. However, as Shh is increased above

some threshold concentration, it stimulates Gli production to

the point where Gli positively feeds back upon its own

expression and rapidly drives the state of the network ‘‘On.’’

Positive Gli feedback therefore generates a switch.

Parameter sensitivity/bifurcation analysis

To examine this switchlike behavior in greater detail, we

performed parameter sensitivity analysis to determine how

the steady-state Gli concentrations changed as parameter

values were varied. Specifically, bifurcation analysis was

performed (using XppAuto) first to investigate how steady-

state Gli concentrations shifted as a function of Shh. Fig. 2 B
demonstrates that the system exhibits hysteresis, i.e., Gli

switches from a low/Off to a high/On state at a sharp threshold

Shh concentration, and the switching point differs depending

upon whether Shh is being increased or reduced. Hysteresis,

which has been experimentally observed in two important

systems (Bagowski and Ferrell, 2001; Pomerening et al.,

2003), serves two important functions: it provides an un-

ambiguous threshold switching mechanism, and it acts to

filter noise from a system (below). Important early theoretical

work demonstrated that hypothetical autoregulatory tran-

scription factors could function as hysteretic switches

(Savageau, 1974), but the Shh network imposes the additional

intricacies of complex regulation by an external signal,

multiple transcription factors, and negative feedback via Ptc.

It has been observed that certain mutations or gene

amplifications in Shh network components underlie disease.

For example, gli1 gene amplification, inactivating Ptc

mutations, mutations leading to constitutively active Smo,

and Gli3 truncations have all been associated with cancer

(Ruiz i Altaba et al., 2002b). These mutations can be

mathematically represented as an increase in the gli promoter

strength (vmax,G in Table 1), a decrease in the ability of Ptc to

inhibit Smo (lower 1/Kptc), or an increase in the Gli3

dissociation constant for its target DNA binding site (K2).

We utilized bifurcation analysis to examine the system

sensitivity to these parameters. Fig. 2 C depicts how vmax,G

interacts with Shh to modulate the bifurcation points at

which Gli switches between two steady-state values,

represented by the dark and light curves. The data in Fig. 2 B,

FIGURE 2 (A) Gli trajectories as a function of time at Shh concentrations equal to 0.1 or 15 times its binding constant to Ptc. For the upper curve, the

concentration was initially low but was then increased at 0.5 h. (B) Hysteresis in the Shh network, where the network output Gli can attain two possible steady

states for an intermediate range of Shh concentration. The point at which switching occurs depends upon whether Shh is increasing or decreasing. (C)

Bifurcation, or parameter sensitivity, analysis of how the switching points vary when the gli promoter strength, denoted by vmax,G, is changed. A very small

change in this parameter has major effects on the Shh levels at which switching occurs. (D) Bifurcation analysis of how the switching points vary with 1/KPtc,

the potency of Ptc inhibition of Smo. (E) Bifurcation analysis of K2, the binding affinity of Gli3 for its DNA site, shows that the system is also highly sensitive

to this parameter. (F) By contrast, the system or the values of Shh at which switching occurs are not as sensitive to parameters such as rbas,P, the basal rate of Ptc

expression.
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calculated for vmax,G 5 0.24 nM/min, are represented by the

horizontal dashed line in Fig. 2 C. As Shh is increased from

a low initial concentration, Gli stays in the lower steady state

until it reaches the dark bifurcation curve, where it switches

to its upper state. To switch back to the lower state along the

vmax,G 5 0.24 nM/min line, however, Shh must be reduced

until the system hits the lighter curve. If the gli1 gene were

amplified, vmax,G would be increased, and at a critical vmax,G

value, the light curve intersects with the axis. Biologically

speaking, this result indicates that when the switch is turned

On, it cannot return to the Off state. Therefore, if gli1 is

amplified in a cell where Shh signaling regulates cell

proliferation, this irreversible or broken switch would at-

tempt to continually drive mitosis and could initiate the path

to cell transformation and cancer.

Next, the potency of Ptc repression of Smo activity is

represented by 1/Kptc, where Kptc is the active Ptc concentra-

tion required for half maximal inhibition. Fig. 2 A was

generated for a 1/Kptc value of 12 nM21. For lower values of

Ptc potency 1/Kptc, the light curve in Fig. 2 D, which

represents the Shh concentration at which the system turns

from On to Off as Shh is reduced, ends. Therefore, Ptc and

Smo mutations can also break the switch and initiate cell

transformation. In addition to the key parameters vmax,G and

1/Kptc, sensitivity analysis revealed that the affinities of Gli

and Gli3 for their DNA consensus binding site were an im-

portant determinant of system behavior. For example, Fig. 2E
shows that even a slight increase in the dissociation constant

K2, i.e., weaker binding of the repressor Gli3R, can also yield

an irreversible switch. This result is consistent with clinical

observations that some cancers are caused by Gli3 mutations

that result in a truncated protein (Ruiz i Altaba et al., 2002b).

To quantify the system sensitivity in more detail, the linear

slopes of the left bifurcation curves in Fig. 2, C–F, the points

at which the system switches from On to Off, were evaluated

at the parameter values utilized in Fig. 2, A and B. It was

found that at this point a 10% change in the value of vmax,G

resulted in a .1000% change in the value of Shh at which

On to Off switching occurs, indicating that the system is

exceedingly sensitive to this parameter. By comparison,

a 10% change in K2 and 1/Kptc results in moderate 60% and

32% changes, respectively, in the Shh level at which

switching occurs. However, the system was less sensitive

to the values of all other parameters. For example, the

switching points do not shift significantly with rbas,P, the

parameter that describes the basal or leaky expression of

the ptc promoter in the absence of transcription factor

binding (Fig. 2 F). Specifically, a 10% change in this para-

meter yields only a 2.4% change in the Shh switching point.

Shh network sensitivity to biological noise

This deterministic analysis successfully demonstrates how

the steady-state values of the bistable system shift as

parameter values change. However, numerous studies have

revealed the importance of stochastic or probabilistic effects

in biological systems where the number of molecules is low

enough for noise to be important, and the deterministic

chemical kinetic descriptions are limited (Hasty et al., 2001;

Rao et al., 2002). To examine whether stochastic fluctuations

in the value of Gli and other network components can

significantly alter the switch’s behavior, with potentially

important implications for stem cell fate choice, we

implemented the Gillespie stochastic simulation algorithm

(Gillespie, 1977) in C11 to simulate the individual

molecular reactions of Fig. 1. Fig. 3 A shows several Gli

time trajectories. At the low initial Shh concentration (1 nM),

Gli fluctuates around a mean value due to network noise. At

33 h, the Shh concentration was increased to 14.3 nM, a value

just below the concentration at which deterministic analysis

predicts the system would switch (Fig. 2 B). Stochastic

analysis reveals that at this point noise can cause the system

to spontaneously switch states, consistent with the obser-

vation in other physical systems that noise can induce

spontaneous switching in a bistable system (reviewed in

Hangii et al. (1990)). One Gli concentration trajectory stays

at the low steady state, whereas two others achieve a suf-

ficiently high concentration to slip away from the lower

concentration and flip to the higher state at random times

(Fig. 3 A). That is, noise can undermine the Shh genetic

switch by causing spontaneous leaking between states at

random times, a result previously observed, for example, in

a simple gene network (Hasty et al., 2000) and in the lambda

phage lysis/lysogeny switch (Arkin et al., 1998).

To further explore the biological implications of this result

in the Shh network and in stem cell fate choice, we analyzed

the first pass time (FPT) or the time interval at which the

system initially passes from the lower to the upper state. This

is an important quantity, as a genetic switch must be able to

execute a decision in response to an extracellular stimulus

within a biologically relevant duration. The average FPT for

20 simulation runs was computed for a range of Shh

concentrations (Fig. 3 B). At high Shh concentrations

predicted to flip cells to the upper Gli state (Fig. 2 B), the

FPT was low (;30 h). By contrast, at very low concen-

trations, the FPT was sufficiently high that the circuit would

stay in the Off state for an extremely long period of time

(.300 h), indicating that for timescales over which Shh

would be acting upon cells (such as spinal cord patterning

(Ericson et al., 1996)), they would remain Shh nonresponsive.

At intermediate concentrations, where Fig. 3 A showed that

noise-induced switching would occur, the FPT increases very

sharply as Shh concentration decreases. Therefore, although

noise can induce a degree of spontaneous switching, it may

occur within a sufficiently narrow range of Shh concen-

trations that the sharp transition in cell state as a function of

increasing Shh concentration could be maintained.

To further explore the sharpness of this transition, the

average value of Gli at each concentration was averaged over

five simulations (each run for 200 h of simulated time). Fig. 3
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C overlays the Gli average and standard deviations for these

stochastic simulations on top of the deterministic solution

from Fig. 2 B. For the majority of the concentration range,

the mean of the stochastic solutions precisely matches the

deterministic values, though the error bars indicate that Gli

continually fluctuates within a narrow concentration range.

At an intermediate Shh concentration near the switching

point, however, noise-induced flipping yields a large error in

the value of Gli, since some trajectories within this range flip

On while others remain in the Off state (Fig. 2 A). However,

because this uncertainty occurs only within a narrow con-

centration range, the overall sharp, robust nature of the

switch is preserved.

Positive Gli autoregulation enables a bistable switch, but

positive feedback also amplifies noise within a system.

Negative feedback (in the form of Gli upregulation of the

signal suppressor Ptc, Fig. 1 A) could potentially serve the

role of counteracting this noise amplification. To test this

possibility, simulations were performed in the absence of

negative feedback, that is, at a constant Ptc concentration not

regulated by Gli. One result of this modification was that the

value of the Gli promoter strength vmax,G had to be reduced

nearly twofold to prevent the system from existing in

a continually high Gli concentration state, since removing

the negative feedback favors the On state. However, the

second result was that in the absence of this outer negative

feedback loop, the system was far noisier. In contrast to Fig.

3 C, there were significant fluctuations in Gli concentration

and uncertainty in the cell state over a wide Shh con-

centration range (Fig. 3 D), despite the fact that the Shh

concentration ranges over which bistability is deterministi-

cally predicted were very similar. This result indicates that

negative feedback reduces system noise and enables a robust

transition in cell state within a narrow Shh signal con-

centration range near the deterministically predicted switch-

ing point.

DISCUSSION

The Shh network functions as a stem cell fate switch in many

contexts, from the developing spinal cord (Jessell and

Lumsden, 1997) to the adult hippocampus (Lai et al., 2003).

It is therefore effective as a model system to study the

structure of regulatory networks controlling cell fate choices.

In many systems, particularly for tissue patterning, Shh

switches the cell state at a critical threshold level (Ericson

et al., 1995; Hynes et al., 1995; Jessell and Lumsden, 1997;

Ruiz i Altaba et al., 2002a; Wechsler-Reya and Scott, 1999);

however, the properties of the Shh network that endow it

FIGURE 3 (A) Stochastic simulations of Gli trajectories just below the

Shh concentration at which the system would deterministically switch from

Off to On. When the Gli concentration reaches a threshold value (the

unstable, intermediate state in the hysteresis curve of Fig. 2 B, denoted by the

dotted line), spontaneous switching occurs. However, one trajectory does not

ever switch during the simulation time. (B) The first passage time (FPT) for

passage from the Off to the On state as a function of Shh. The mean and

standard deviation of 20 simulations are plotted. (C) Stochastic simulations

of Gli as a function of Shh. Each point represents the mean and standard

deviation of five simulations, each run for 200 h of simulated time. The

underlying solid curves are the stable steady states of the deterministic

solution from Fig. 2 B. (D) Stochastic simulations of Gli as a function of Shh

when Ptc is held constant, eliminating the negative feedback loop. The

underlying solid curves are the stable steady states of the corresponding

deterministic solution for fixed Ptc. Despite the fact that the Shh

concentration ranges over which bistability is deterministically predicted

are similar to those in Fig. 3 C, stochastic switching occurs at a much lower

Shh level.
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with this capability have not been quantitatively analyzed.

We have examined the Shh signaling and gene regulation

system using both deterministic and stochastic descriptions,

to take into account the low numbers of key molecules

present in many biological systems.

This first detailed model of the Shh signaling network

reveals that the transcription factor Gli is the heart of the

network. That is, its autoregulatory positive transcriptional

feedback allows the system to function as a hysteretic switch,

with either a low basal Gli expression level or a fully induced

expression state. In addition, the extracellular Shh concen-

tration controls switching between these two states, i.e., the

network converts the analog Shh input into a binary system

output to control ‘‘all-or-none’’ stem cell functional choices.

Also, hysteresis provides an unambiguous switch-like

mechanism insensitive to small fluctuations in the level of

external signal once the state switch has occurred (Rao et al.,

2002). Furthermore, hysteresis has been experimentally

observed in the JNK signaling cascade and in Cdc2 cell

cycle regulation, indicating that it may be a broadly

important phenomenon in the control of cell function

(Bagowski and Ferrell, 2001; Pomerening et al., 2003).

Hysteresis in the Shh network is maintained despite

variation in the values of numerous parameters, including

promoter basal expression rates, Shh binding affinity, and the

Gli3 proteolysis rate. By contrast, the network is highly

sensitive to the values of several key parameters, including the

Gli expression rate (vmax,G) and the potency of Ptc inhibition

of Smo activity (1/Kptc) (Fig. 2). Specifically, an increase in

vmax,G or decrease in 1/Kptc leads to an irreversible switch,

where once the Shh signaling network is turned On, it is

incapable of accessing the Off state again. This result is

particularly interesting since in tissues where Shh regulates

mitosis, gli1 amplification, mutations leading to constitu-

tively active Smo, and inactivating Ptc mutations have been

implicated in cancer, an irreversible state of cell proliferation.

In addition to correlating well with experimental data, the

model can make several new predictions. First, the switch

behavior is also highly sensitive to the DNA binding

affinities of Gli and Gli3, such that increasing Gli DNA

affinity or decreasing Gli3 binding also ‘‘breaks’’ the switch.

This necessity for carefully balanced Gli and Gli3 affinity is

interesting, particularly in light of the fact that the DNA

binding domains of Gli1, 2, and 3 are highly conserved and

share 88% amino acid identity (Lee et al., 1997), suggesting

that the relative affinities of the three domains are similar.

Gli3 mutations that yield a truncated protein have been

associated with cancer (Ruiz i Altaba et al., 2002b).

However, no gli point mutations have yet been observed to

be associated with cancer, and this analysis suggests that

such mutations may be revealed in the future. Furthermore,

such sensitivity analysis of how the Shh switch can

malfunction may elucidate which network locus to target/

inhibit to maximize cancer therapy efficacy. The parameter

that most sensitively affects system stability is the gli1

promoter strength, so dominant negative Gli1 or RNA

interference directed against Gli1 mRNA would be predicted

to have the most therapeutic efficacy for cancer therapy.

A nanomolar Gli concentration range translates into

hundreds to thousands of Gli molecules per cell, a level

where random fluctuations in gene and protein expression

can make system noise significant. In situations where cell

fate must be precisely controlled, such as in Shh regulation

of stem cell function and tissue patterning (Jessell and

Lumsden, 1997; Lai et al., 2003), cells have likely evolved

mechanisms to neutralize noise and uncertainty in signaling

networks (Rao et al., 2002). The Shh network is composed of

a positive Gli transcriptional feedback loop embedded within

a negative Ptc signaling loop. In the absence of the negative

feedback, the system is extremely noisy, since small initial

fluctuations in Gli are amplified by the positive feedback,

leading to uncertainty and randomness in the Shh concen-

tration and the time at which switching between states occurs

(Fig. 3 D). However, the recursive loop structure with

external negative feedback acts to dampen Gli fluctuations to

reduce system noise and lead to a more ‘‘deterministic’’

switch in cell state within a narrow Shh concentration range

(Fig. 3, B and C).

This result is consistent with experimental observations of

cell fate patterning by a Shh concentration gradient in the

developing neural tube (Ericson et al., 1995, 1996). High

Shh concentrations induce expression of the transcription

factors Isl1/Isl2 and a subsequent motor neuron fate, whereas

lower levels stimulate Lim1/Lim2 expression and an

interneuron fate choice. Intriguingly, just at the interface

between these two domains, i.e., at the switching point,

a number of cells were observed to be positive for both Isl1/

Isl2 and Lim1/Lim2 (Fig. 7 in Ericson et al., 1996). This is

consistent with the hypothesis that these cells began to

commit to Lim expression and an interneuron fate, but

stochastic switching in Gli expression to an On state (as in

Fig. 3 A) subsequently pushed the cells to the motor neuron

fate midway through their fate decision. Coexpression of

these two transcription factors is not observed at later time

points, indicating that the cells finally did commit to a single

fate, or were eliminated. At any rate, this result indicates that

the interface may be noisy, but that the structure of the Shh

network is able to confine that noise to a narrow Shh con-

centration window and maintain a sharp boundary between

the two cell fate domains.

Therefore, the Ptc feedback serves several potential

purposes. It makes the system less sensitive to the potent

transcription factor Gli (Fig. 2 D), and it buffers the system to

noise (Fig. 3). A third possible function of Ptc is that its

upregulation may play a role in modulating Shh transport

through tissue during the establishment of a Shh gradient

(Chen and Struhl, 1996).

It has been shown in yeast that a minimal, synthetic,

positive autoregulatory system based on the engineered

tetracycline transactivator yields a bistable system (Becskei
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et al., 2001). Furthermore, computational work indicates that

noise can induce random switching between the two states in

such simple positive feedback loops (Hasty et al., 2000) and

in fate choices such as the role of lambda repressor in the

lambda bacteriophage lysis/lysogeny decision (Arkin et al.,

1998). By contrast, negative feedback has long been

recognized in control theory for its ability to stabilize

systems (Morari and Zafiriou, 1997), and experimental anal-

ysis in bacteria of a synthetic repressive autoregultory tran-

scription factor has confirmed that negative feedback in a

system acts to dampen noise (Becskei and Serrano, 2000).

It is therefore intriguing that the Shh network has evolved

and exploited positive feedback to create a switch and

negative feedback to dampen noise and thereby maintain the

robust properties of the switch.

This Shh network structure is representative of a large

class of signaling systems that control fate decisions.

Positive autoregulatory transcription factors are ubiquitous

in biology in systems that control critical cell fate choices,

from stem cell fate determination and tissue patterning in

Drosophila development (Kuziora and McGinnis, 1988) to

the GATA transcription factors in hematopoietic stem and

progenitor cell differentiation (Murphy and Reiner, 2002).

Interestingly, there are also ample examples of gene reg-

ulatory and signaling systems in which there is a complex in-

terplay between positive and negative transcriptional

feedback loops, similar to the architecture of the Shh system.

For example, in a system crucial to the development of the

eye and nervous system, Pax6 is autoregulatory, upregulates

a second transcription factor, Six3, and is itself upregulated

by Six3 (Aota et al., 2003; Goudreau et al., 2002). However,

Six3 also negatively regulates its own transcription (Lengler

and Graw, 2001). As a second example, the ubiquitous cell

fate regulator TGF-b1 upregulates its own expression via the

AP-1 transcription factor (Kim et al., 1990), but negatively

autoregulates itself via the repressive transcription factor

Smad6 (Cutroneo and Phan, 2003). As a final example,

BMPs activate Mash1, an autoregulatory, proneural bHLH

transcription factor crucial for neural development. How-

ever, BMP signaling also activates Zic1, a transcriptional

repressor of Mash1 (Ebert et al., 2003). Shh is therefore

representative of a common network motif, and future

dynamic analysis of other systems may elucidate similarities

and differences in the evolved design principles between

these key developmental control networks, particularly in

how the interplay between positive and negative feedback

yields robust switches.

Stem cells are faced with a number of critical fate decisions

throughout their lives, including proliferation versus differ-

entiation as well as the many choices faced during lineage

commitment. The life of a stem cell can therefore be viewed as

a branching decision process controlled by a series of genetic

switches. Therefore, stem cell control can be achieved by

providing the correct signals as a function of time to flip fate

switches and guide the cells down a particular developmental

trajectory. Shh can serve as one of these switches that can, in

different contexts, be tasked to control different stem cell

decisions, including both self-renewal (Lai et al., 2003) and

lineage commitment (Jessell and Lumsden, 1997). Therefore,

computational analysis of such regulatory switches can aid

both basic and applied efforts to understand the mechanisms

of stem cell fate choices, as well as to elucidate the extent to

which regulatory network noise could in some situations

impose inherent limitations on the ability to deterministically

or precisely control stem cell fate in vitro or in vivo.

A number of simplifying assumptions were made in this

analysis (see Supplemental Materials). For example, the

proteins that interact with and tether Gli3 in the cytosol

(Fused, SuFu, and Costal-2) are not explicitly incorporated

into the model (Ruiz i Altaba et al., 2002a), but are implicitly

accounted for in the release and activity of full-length Gli3

upon Shh signaling. We also assume that on the timescales of

protein synthesis, rapid intracellular transport eliminates

protein concentration gradients, an assumption that could be

relaxed to consider separate nuclear and cytoplasmic

compartments. Moreover, we represent the repression of

Gli3 synthesis by Shh signaling as an inverse relationship

between Ptc and Gli3 synthesis (Fig. 1 B), a formulation that

can be revised as the mechanism for this repression is

elucidated. In addition, there is evidence that Shh is

transcriptionally upregulated upon Shh signaling (Epstein

et al., 1999), but incorporating Shh upregulation and

transport into a three-dimensional model of Shh signaling

during tissue patterning reveals that it actually assists in

inducing sharp spatial regulation of cell state (unpublished).

Furthermore, this analysis indicates the network can

specify up to two cell fates, but limb and spinal cord tissue

patterning involve multiple cell types. The incorporation of

gradients in other factors, such as BMPs in the spinal cord

(Jessell and Lumsden, 1997), may provide the additional

spatial information necessary to induce multiple cell fates.

For example, BMPs may push Shh signaling and the Gli

concentration down to zero, yielding a three-state cell

differentiation switch similar to the manner in which each

of three concentrations of the transcription factor Oct3/4

specify a different embryonic stem cell fate (Niwa et al.,

2000). It will also be interesting to analyze whether the BMP

signaling system also behaves as a binary switch. Finally,

including additional factors, such as tracking both mRNA

and protein synthesis, separately analyzing Gli1 and Gli2

(Ruiz i Altaba et al., 2002a), and inclusion of receptor-ligand

trafficking dynamics (Denef et al., 2000), could shift the

values of kinetic parameters for which switchlike behavior is

observed, but would not affect the fundamental conclusions

of this work.

In summary, we have computationally and theoretically

analyzed the Shh network, a crucial signaling system that

controls cell survival, proliferation, and differentiation in

different contexts, such as the eye, skin, heart, spinal cord,

and nervous system. We have found that the network
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architecture, composed of recursive positive transcriptional

and negative signaling feedback loops, endows this network

with the ability to function as a bistable cell fate switch

despite many potential mutations as well as biological noise.

However, the system behaves as an irreversible or broken

switch when the values of several key parameters are

changed even modestly, changes that would correspond to

mutations and gene amplifications that underlie genetic

disease and cancer. This work illustrates that theoretical

analysis is a powerful tool to understand the functions, and

malfunctions, of highly interconnected genetic networks that

control and execute stem cell behavior.
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